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1. Introduction

This chapter covers the motion functionality of the Roomba and Moway devices. We begin the chapter with

explaining the design and the interfaces of the roomba backend and continue by a small introduction on how

these interfaces can be used in applications. Further, we introduce the Moway Robots, which are small-size

programmable robots. We conclude this chapter with a short introduction into the theoretical field of motion

algorithms and give hints concerning currently ongoing work at the roomba backend.

2. Wiselib Roomba Backend

Some experiments were conducted using a mobile robot swarm, based on iRobot Roomba 500 Series vacuum

cleaner robots. The robots have a disk-like shape with a diameter of 33cm and a height of 8cm. Motion control is

provided by two independently suspended wheels, located on the robots diameter. They allow it to move forwards

or backwards, and to turn with arbitrary curvature as well as in-place. All Roombas are equipped with six infrared

sensors for sensing the proximity of physical obstacles as well as three bump sensors enabling them to detect

physical contact to walls or each other. Each robot can track its pose using an integrated odometer. However this

is subject to cumulative error, and therefore generally non suited for long-term absolute pose calculation.

The Wiselib Roomba interface consists of a set of concepts and templated classes. The Roomba itself is

modeled as a Roomba class which provides access to some basic movement and sensor query operations. It does

so by interfacing with an instance of the Serial Communication Wiselib concept for exchanging commands and

sensor data with the robot. The protocol for this communication is defined by the iRobot Roomba Open Interface

Specification [iRo].

Before a Roomba instance can be used it thus must be initialized with a reference to a serial communication
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Figure 1: General structure of the Roomba Backend components

object. Additionally, the user can provide a number of flags in order to control which sensor data will be moni-

tored by the interface. After initialization, the move(...) , turn(...) and stop() methods can be used for

starting and stopping motion at any desired velocities. Additionally, the call operator and the wall() method

will return the monitored sensor data in the format specified by the Open Interface Specification, whereas the

state() and the reg new data callback(...) methods provide information on the availability of (new)

sensor data. For example, consider the following piece of code (template parameters are left out for readability):

1 roomba.init(

2 uart,

3 RoombaModel::WALL | RoombaModel::POSITION

4 );

5

6 // Start moving with 200 mm/s.

7 roomba.move(200);

8

9 // Here you would probably want to wait some time.

10

11 // Now stop motion.

12 roomba.stop();

13

14 if(roomba.wall()) // is the wall bumper being pressed?

15 doSomething();

As you can see from this example, controlling a robot this way can become a little tedious for more complex

movement patterns. With this approach one would write lots of code that is only concerned with waiting for

movements and interruptions of those wait phases in case events like wall contact happen. The reason for this

is that the Roomba class was specifically designed to reflect the Roomba interface with as little abstraction as

possible. In order to be able to do more complex things more easily we provide - based on this simple interface -

two “rich interfaces” for the Roomba: The RoombaMotion and RoombaEventSensor classes.

The RoombaMotion class enhances the motion capabilities of the Roomba by incorporating odometry and

sensor information directly into its motion methods. This way can provide methods for moving a certain distance,

turning about a given angle or moving until an event such as physical contact with a wall is detected. Last but not

least, the class tracks the robots odometer output to estimate its current position and orientation (or “pose”) which

can be queried at all times 1. The usage of this class is simple. First create an instance of Roomba as described

above, then initialize a RoombaMotion with a reference to it:

1 roomba_motion.init(roomba);

2

1Note however that due to rounding that is done by the robot before data transmission this is very prone to error accumulation
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3 // Move 2m.

4 roomba_motion.move_distance(2000);

5

6 // Turn 90 degrees.

7 roomba_motion.turn_about(RoombaAngle(Math::PI / 2.0));

8

9 // Move until you hit an obstacle.

10 roomba_motion.move_to_wall();

11

12 // Print out the current estimated position.

13 cout << roomba_motion.pose().position.x << ","

14 << roomba_motion.pose().position.y << endl;

Note that in contrast to the Roomba class all turn ... and move ... calls wait for the motion to finish before

returning.

The RoombaEventSensor on the other hand allows for elegant and lightweight access to events. While the

Roomba continuously delivers new sensor data, the user is typically only interested in changes in those data.

RoombaEventSensor provides an easy way to be informed when such a change occurs via a callback. The cur-

rent implementation allows solely for detection of “bumper pressed” (i.e. wall hit) events, but is easily extendable

to arbitrary other sensor-data based events as well.

3. Roomba Motion

Delivery of messages between unconnected networks was established in FRONTS by robots (cf. End-to-End

Communication Chapter). Those robots transport undeliverable messages over communication gaps between the

networks. Here, we exemplarily describe the basic algorithms and implementation techniques used for the robot

motions as well as the interaction with the Roomba backend. We also give a hint, how to easily implement further

and more elaborated movement patterns than those shipped with the current Wiselib library. For this section we

assume that the Roomba’s motion is controlled by a connected PC (OsModel) on which the program is executed.

The current exemplary implementation of robot motion patterns is given by the class RoombaMovement. The

class provides the two movement patterns straight line walk and random walk:

1 The straight line movement pattern is essentially defined by the two parameters speed and period time.

With this, the Roomba moves at a straight line at the given speed for the given time. After this operation,

it moves at same speed and for the same time period backwards. This process is repeated until the stop()

function is called or the Roomba hits a wall with its front bumper.

2 The random walk movement pattern is essentially defined by a speed parameter and constants that define

a minimal and maximal turn angle as well as minimal and maximal movement time. For one step the

Roomba uniformly at random chooses a turn angle at which it turns. After the turn it chooses uniformly

at random a movement time in the given range and moves that time at the given speed. If the Roomba

accidentally hits a wall (which is noticed by the front bumper) it just moves the forward-moved distance

backwards.

In order to use the RoombaMovement class, it is necessary to call the init() method for initialization, one

of the methods set movement pattern to line() and set movement pattern to random walk() to setup

the movement-pattern and to start the movement by calling start(int speed) with a given speed value. An

example of the initialization procedure looks as the following:

1 // Initialize roomba movement

2 roomba_movement.init(

3 *roomba, // Roomba_P

4 0, // OsModel_P::Radio

5 *debug, // OsModel_P::Debug

6 *my_clock , // OsModel_P::Clock

7 *timer, // OsModel_P::Timer

8 *my_rand // OsModel_P::Rand

9 );

10

11 // Choose the line movement pattern.

12 // Parameter gives the time (in ms) the roomba walks in one direction.
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13 roomba_movement.set_movement_pattern_to_line( 15000 );

14

15 // Starts the movement of the roomba.

16 // Parameter gives the speed of the roomba (0-500).

17 // The roomba can also be started over radio.

18 roomba_movement.start( 300 );

On implementation terms, the RoombaMovement class utilizes the RoombaMotion class as a backend to set

speed, turns, and movements of the Roomba device. The only interesting point about this implementation is

that movements are established by timer callbacks. Hence, in later versions of the class it will be possible to go

away from the PC-platform for controlling the Roomba to more low-cost hardware. Exemplary, we illustrate the

interaction with the move operation of the RoombaMotion class.

1 // Setting the roomba motion to a given speed

2 void move( int16_t speed ) {

3 dest_speed_ = speed;

4 changing_speed_ = true;

5 move_callback( 0 ); // setting a callback with no userdata

6 // callback periode is given by a constant

7 }

8

9 // setting the roomba motion to zero

10 void stop_movement() {

11 roomba_motion_.move( 0 );

12 cur_speed_ = 0;

13 dest_speed_ = 0;

14 changing_speed_ = false;

15 }

These two methods (in case of movement) can be used to firstly set a given movement speed and then register

a callback that after a specified time period calls the stop movement() method and by this ends the movement.

This programming pattern can be found throughout the class design and essentially all movement-classes follow

this design.

4. SunSPOT and Moway Robots

Moway is a small-size programmable robot, which is programmed from a PC using MOWAYGUI a software

tool based on flow charts– or using the programming languages C or Assembly. Moway is mainly designed to

perform Practical minirobotics applications. It features a drive system with the following controls: speed control,

time control, traveled distance control, general speedometer and angle control. A SunSPOT has been mounted

on top of each robot in order to execute our algorithms and to enable the communication with the surrounding

sensor network.

The communication between SunSPOT and Moway is established using the SunSPOT’s I/O connector in

conjunction with Moway’s expansion connector. SunSPOT’s I/O connector provides the General Purpose digital

I/O lines, which correspond to pins D0 through D4, and the the high current output pins, H0-H3. Moway’s

expansion connector has 8 pins: PIN3-PIN8 can be configured either as inputs or outputs, PIN1 is Vcc and

PIN2 is GND. We have connected SunSPOT’s digital output pins D0-D4 and H0, to pins 3-8 of the Moway

expansion connector respectively. We have also connected SunSPOT’s GND to expansion connector’s GND.

The 6 SunSPOT’s digital pins can represent 12 different states, as a result Moway is able to execute 12 different

operations. On Table 1, the mapping between SunSPOT’s digital pins configurations and Moway instructions is

described.

In order to control the motion of the Moway Robot, SunSPOT sets to high state the corresponding pins.

Moway repeatedly reads the expansion connector’s pins and executes the corresponding instruction. In this way,

the functionality of the Moway is exposed to SunSPOT, where the implementation of movement patterns is easier.

Currently, there are two motion modes implemented on SunSPOT, the Remote Control and the Random Walk:

1 Remote Control: In this approach, we are able to remotely instruct the Moway robot to move to a desired

location. A listening thread is executed on SunSPOT which receives remote commands over 802.15.4

packets. All possible commands are summarized on Table 1. The user defines the kind of movement,

while in the case of a forward movement the corresponding duration as well.
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SunSPOT’s pins states Moway

D0 D1 D2 D3 D4 H0 Operation

0 0 0 0 0 0 Stop

1 0 0 1 0 0 Forward

1 0 0 1 1 0 Slow Forward

1 0 0 1 1 1 Fast Forward

0 1 1 0 0 0 Right turn 30o

0 1 1 1 0 0 Right turn 60o

0 1 1 1 1 0 Right turn 90o

0 1 1 1 1 1 Right turn 120o

0 0 1 0 0 0 Left turn 30o

0 0 1 1 0 0 Left turn 60o

0 0 1 1 1 0 Left turn 90o

0 0 1 1 1 1 Left turn 120o

Table 1: Mapping of SunSPOT’s pins configurations to Moway instructions.

2 Random walk: The random walk pattern is similar to the Roomba movement pattern which is described

on section 8.3. Initially, the specific movement pattern chooses randomly one of the possible forward

movements as well as the movement duration. The movement duration is within the minimal and maximal

predefined constants. After the forward movement, it chooses one of the possible turn movements and then

another forward movement.

If the Moway robot detects an obstacle, either in Remote Control or in Random Walk mode, automatically

executes a 45o clockwise or counterclockwise turn depending on the position of the obstacle.

5. Motion Algorithms

This section gives an overview over the different kinds of robot motion algorithms. Most of these algorithms

were not implemented so far, as more sensoric information would be necessary to execute them. Hence, this

section provides ideas for future implementations of motion algorithms for robot swarms.

Section 8.3 dealt with robots which were used to transmit messages between immobile sensors. Due to very

limited sensoric information about their surrounding, the robots could not do any better than performing a random

walk on the area between the sensors and transmit messages whenever possible. This section is dedicated to

algorithms which need more sensoric input, but are ,on the other hand, better suited for transmitting messages

between two sensors.

Like in Section 8.3, consider two sensors placed in a plane terrain, which want to exchange messages. As they

are placed too far away from each other, they cannot communicate directly. Mobile robots are used to transmit

the messages in the following way: In the beginning, they form a chain between the sensors, such that every robot

can communicate with its two neighbors. This chain, however, may be arbitrarily long and winding. It may even

intersect itself. The sensors can use this robotic chain to exchange messages, but the more messages are sent, the

more energy is wasted for the long distances over which the messages are transmitted. The goal is, therefore, to

let the robots move as close to the line between the sensors as possible. Figure 2 depicts the situation.

If the robots and sensors were equipped with a precise GPS, the sensors could exchange their positions and

each robot could compute a target position on the line between the sensors. Using its GPS, it could move to

this target position and the goal would be achieved. However, the robots are able to move to the line between

the sensors even without GPS and without communication. The only information that they need is the relative

position of their neighbors to their own position. A strategy for the movement of the robots, called Go-To-The-

Middle [DKLM06], which achieves this goal is indicated in Figure 3(a). The robots act in discrete, synchronous

time steps. In each time step, each robot observes the positions of its two neighbors relative to its own position

and then moves to the middle between the neighbors.

It can be shown that using Go-To-The-Middle, the robots converge to positions which are evenly distributed

on the line between the sensors. In the worst case, it takes Θ(n2 log n) time steps until the robots are in distance

at most 1 from the positions they converge to.
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Figure 2: One possible start configuration for a robot chain between two sensors
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Figure 3: Two different motion strategies

A similar strategy, Move-On-Bisector [DKKM10], achieves the same goal. In this case, the robots do not need

to measure the positions of their neighbors. Here, they are only required to determine the direction in which their

neighbors are positioned. In exchange, they need to measure these directions continuously and not only at a few

points in time. If this is possible, the robots can continuously move in direction of the bisector of the angle which

is formed by its two neighbors (see Figure 3(b) for an illustration). Then, it takes time O(n) in the worst case

until the robots reach the line between the sensors. This strategy does not guarantee that the robots distribute

evenly on this line, but they do not only converge to the line, they actually reach it.

6. Further Improvements

In order to improve upon precision of movement with the Roomba and to increase flexibility for future en-

hancement (e.g. other robot types), development of a new Wiselib robot backend has been started. By not

querying the Roombas odometer but its wheel rotation counters directly introduces more precise motion than

the current interface offers. Modularity has been also increased in a way that pose estimation can be managed

independently from motion control which enables the usage of external odometers or positioning systems for

even higher precision.

Since such precision problems are not at all restricted to this specific type of robot, there has been research on

tolerating [KL10], [NY00] and measuring [BF95] odometry errors as well as on reducing errors e.g. by means

of collaboration [RDM00]2. In FRONTS we also researched how robot motion can be lead by radio waves of

discrete intensities (as measurable with the used hardware) [HKK11], [Has10] or how a swarm of robots can

build up a triangulation infrastructure to help in localization and thus, precise movement [FKK+11], [FKKS10].

Furthermore, research has been started on decomposition of motion into simple geometric steps [FHKS11].

Often such singular steps (such as moving on a circle) are implementable more precisely than arbitrary motion.

Practical issues of this approach in the case of the Roomba are work in progress.

2Naturally, this list is by no means complete


