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1. Introduction

The Wiselib [BCF+10] is a generic algorithm library for heterogeneous tiny artefacts. The main objective

is to provide algorithms that can run on different hardware and software platforms. Such an algorithm can be

compiled for any supported hardware platform, and even for a simulator without changing any line of algorithm

code. The library is written in C++, which allows the use of modern programming techniques—especially the

use of templates, which are successfully used by well-known C++ libraries such as the STL or Boost. The basic

idea in the Wiselib is to pass important functionalities, as template parameters to an algorithm: implementations

of OS specific code and data structures. Hence, it is possible to compile an algorithm exactly for the current

needs, without producing too much overhead—neither in code space nor in run-time.

The Wiselib supports several target platforms, including well-known low-end operation systems such as

TinyOS or Contiki. This comes with a broad range of different kinds of artefacts—from tiny nodes with 8-

bit microprocessors and tiny amounts of RAM, up to powerful 32-bit nodes being able to run desktop operating

systems such as Linux. Even Smartphones—both iPhone and devices running Android—are supported, allow-

ing for the interconnection of the mobile world with tiny artefacts. While it is easy to write code for a specific

platform, it is a very challenging task to develop platform-independent code. Not only that different operat-

ing systems are in use, but different hardware platforms come also with different versions of compilers. This

means that the developer is forced to spend a great deal of attention on low-level details, making the process of

designing, testing and maintaining source code painfully complex and time consuming.

However, the Wiselib, an algorithm library for heterogeneous tiny artefacts, remedies this unfortunate situ-

ation. This is especially useful for prospective software designers coming from a theoretical side, where the

development of distributed algorithms for many actual or hypothetical problems has grown into a research field

of its own. There is a large variety of highly sophisticated algorithms for all kinds of tasks available, but with

only few of them been tried in practice. A main reason for the lack of theoretical profound algorithms is the

difficult implementation process, holding theoreticians off practical evaluation of their ideas. With the Wiselib,

we bypass these difficulties, providing a powerful development framework towards a simplified implementation

of algorithms on tiny artefacts.

We present the basic building-blocks of the Wiselib, and show that the flexibility of the design has barely

any overhead—neither in code size nor in run-time; one can simply add new algorithms only by following

the presented approach using the Wiselib interfaces. An algorithm, can then run on each supported device or

simulation platform. We already achieved a state in which such an algorithm runs on heterogeneous sensor

networks, and even more, networks in which some parts consist of virtual nodes running in a simulator [BBF+10].
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2. Target Platforms

The Wiselib covers several devices of tiny artefacts, from platforms with low-end microcontrollers as the

MSP430, e.g. on the Tmote Sky, to high-end devices such as Smartphones or the iMote2 being able to run an

Embedded Linux. Table 1 shows an overview of the already supported platforms.

Hardware Firmware/OS CPU Language Dyn Mem ROM RAM Bits

iSense iSense-FW Jennic C++ Physical 128kB 96kB 32

SCW MSB-A2 FeuerWare NXP LPC2387 C None 512kB 98kB 32

SCW MSB430 SCW2, Contiki MSP430 C None 48kB 10kB 16

Tmote Sky/TelosB Contiki,TinyOS MSP430 C, nesC Physical 48kB 10kB 16

G-Node TinyOS MSP430 nesC Physical 116kB 8kB 16

MicaZ Contiki,TinyOS ATMega128L C, nesC Physical 128kB 4kB 8

iMote2 TinyOS Intel XScale nesC Physical 32MB 32MB 32

iPhone, iPod iOS ARM C++, Obj-C Virtual ≥8GB ≥128MB 32

Smartphone Android ARM C++ Virtual ≥2GB ≥64MB 32

Desktop PC Shawn various C++ Virtual unlimited unlimited 32/64

Desktop PC TOSSIM (ATMega128L) nesC (Physical) unlimited unlimited (8)

Table 1: Target platforms of the Wiselib. The columns refer to the type of microcontroller, the standard operating

system, the programming language for it, what kind of dynamic memory is available, the amount of ROM and

RAM, and the bit width.

The operating systems vary from system-specific implementations such as iSense and ScatterWeb to generic

approaches such as Contiki, TinyOS, and Linux. With the different OSs, there also several programming lan-

guages in use. The iSense firmware has been developed in C++, whereas the ScatterWeb firmware and Contiki

use plain C. There are also custom language in use: TinyOS uses the C extension nesC [GLvB+03], applications

for iPhones are written in Objective-C.

Support for dynamic memory allocation is likewise scattered. Only on a few platforms, malloc() and free()

are available. If not, the size of all memory blocks must be known at compile time. iSense, on the other

hand, comes with an own memory management implementation, proving the C++ operators new and delete.

Similarly, there are additional modules for Contiki and TinyOS available. In Contiki, one can use managed

memory allocator or memb block memory allocator, for TinyOS there is TinyAlloc available. However, such

implementations do not support virtual memory as known from Desktop PCs. The memory management is done

directly in the physical memory. Only with more powerful systems, such as Desktop PCs or Smartphones, virtual

memory is available.

There are also significant differences in the amount of available memory, ranging from a few kilobytes to

hundreds of megabytes and more on Smartphones. Finally, also the bit width varies with the amount of supported

systems. The Atmel Atmegas are 8-bit microcontrollers, the MSP430 are 16-bit microcontrollers, whereas the

rest are 32-bit microcontrollers.

3. The Wiselib

The core design pattern for the Wiselib are generic programming techniques that are implemented using C++

templates, which are successfully used by well-known C++ libraries such as the STL or Boost. Templates can

be used to develop very efficient and flexible applications. The basic functionality of templates is to allow the

use of generic code that is fully resolved by the compiler when specific types are given. Thereby, only the code

that is actually needed is generated, and methods and parameters passed as template parameters can be accessed

directly. The main idea of the Wiselib is that system functionality—both OS specific code and data structures

adapting to the current platform—is passed via template parameters.

3.1 Architecture

The fundamental design principle of the Wiselib consists of concepts and models. There are basically three

core components: OS facets, data structures, and algorithms. The idea is shown in Fig. 1.

OS facets are the connection to the supported operating systems. They represent basic system functionality,
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Figure 1: Wiselib Architecture.

such as sending messages over the radio interface, or registering callback events after a given time interval.

They can be seen as a abstraction layer of the underlying OS, but held as simple as possible to ensure the

efficiency of the Wiselib. Hence, there are mostly only type definitions and wrapper functions, no replication of

OS functionality if not required.

Due to the range in supported hardware platforms, it is also possible within the Wiselib to use exactly the data

structure that is suitable. There are static implementations of lists and maps, if no dynamic memory allocation is

possible. But on high-end systems, efficient data structures, e.g. from the STL, can be used. Algorithm code is

not affected by such a choice, since data structures are passed as template arguments.

Finally, the algorithms are the core of the Wiselib. There are several algorithms from several categories

available, whereby a category groups algorithms by their fundamental functionality. For instance, there are

categories for routing, clustering, and time synchronization algorithms. Algorithms do not contain any platform

specific code, and can be used with each supported OS facet to let the algorithm run on any platform without

changing any line of algorithm code.

A simplified example is shown in Fig. 2. There is one implementation of an algorithm that expects a radio as

template parameter. If an implementation for Contiki is passed, the algorithm can run on Contiki-based systems.

Alternatively, if an implementation for iSense is passed, the algorithm can run on these systems.

3.2 OS Facets

OS facets represent the connection to the underlying OS, and provide the basic functionality for an algorithm

to work. There are several facets, for example a radio for sending and receiving messages, a timer for event

registration, or a clock providing the current system time. The most important OS facets are implemented for all

supported platforms, whereby different algorithms may require different facets. This comes with a big advantage:

when integrating a new platform, this can be done by adding only a few facets with only a few hundred lines of

code, and already having support for most of the algorithms in the Wiselib without too much effort.

OS calls in such facets can mostly be done by only doing a system call. This, can in turn be directly resolved

by the compiler, resulting in no overhead, neither in code size nor in execution time. In some cases, for example

in C-based operating systems, a translation between C++ member function calls and C function calls is required.

This comes with a slight overhead, but as we see later in this Chapter, this overhead is very low.

Another advantage with the template-based approach of concepts and models is that one concept can be imple-

mented by several models, each for special purposes. For example, we can provide one radio model for Contiki

using the Rime stack, and another Contiki model using the 6lowPan implementation. When compiling an algo-

rithm with either of these models, there is no overhead with this flexibility, since the compiler can resolve the
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Figure 2: Passing a radio as template parameter.

corresponding code directly at compile time.

A reduced example for an iSense model of the OS facet “radio”, written in C++, is as follows:

1 template <...> class iSenseRadioModel {

2 int send(id_t id, size_t len, data_t *data)

3 {

4 os_.radio().send( id, len, data, 0, 0 );

5 return SUCCESS;

6 }

In this example, the send-method of the radio is implemented, directly passing the call to the iSense firmware.

The compiler can directly resolve this call, without generating any overhead.

3.3 Data Structures

There are target systems in the Wiselib, which do not provide dynamic memory allocation. Even worse, some

compilers do even not support exceptions or RTTI. With these restrictions, it is not possible to use available data

structures from an existing STL implementation. This affects both standard implementations as shipped with the

GCC, as well as implementations designed for tiny devices such as the uSTL.

The Wiselib therefore provides an own STL implementation—the pSTL. Memory allocation is done statically,

without any need for malloc() or new(). Furthermore, additional features such as exceptions or RTTI are not

used. The pSTL is a subset of the STL, providing only the most important features. We have both concepts and

models for the basic containers such as list, set, map, etc., as well as iterators and selected STL algorithms.

Each Wiselib algorithm that awaits a model of the pSTL as template parameter can also be compiled with original

STL data structures or compliant implementations, allowing for passing exactly the data structure that is conve-

nient for the corresponding device. This results in a design that not only scales down to very limited devices, but

also scales up to powerful nodes, utilizing all the available resources on them.
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Another advantage with this approach is that the algorithm logic, which is invariant over different platforms,

is decoupled from data storage, which heavily changes when an algorithm is ported to a platform of different

characteristics.

3.4 Algorithms

The most important part of the Wiselib are the algorithms—enabling the execution of sophisticated protocols

on different kinds of tiny artefacts, without changing any line of algorithm code. Again, Wiselib algorithms

follow the design principle of concepts and models. There are several categories available, each with an own

concept. For instance, we have a routing, a time synchronization, and a clustering category. Algorithm imple-

mentations (models) can belong to one or more categories—the latter common for cross-layer algorithms.

Such a model usually awaits both OS facets and data structures as template parameters. For a generalized

usage of all algorithms within the Wiselib, there are common rules of how to initialize such elements. OS facets

are initialized by the application that uses the algorithm, since there may be specific construction requirements

on different platforms. Data structures, on the other hand, are initialized within the algorithm to encapsulate the

knowledge of certain data values in the algorithm.

Having such well-defined algorithm interfaces comes with certain benefits. First, algorithms can be easily

compared against each other, by simply altering a class name in the initialization code. This is useful for both

testing purposes and evaluation issues. Second, all algorithms of a category are quite similar—at least regard-

ing the basic type definitions and method declarations. Algorithm developers can thus start with a new model

by copy-and-paste, in contrast to start from scratch. This lowers the difficulty of algorithm developments sig-

nificantly, especially for theoreticians whose focus is on high-level algorithm evaluation instead of embedded

development.

3.5 Advanced Design Techniques

The Wiselib design with concepts and models allows for an efficient realization of inheritance. Since we

do not use any virtual inheritance, as known from ordinary classes in C++, we can easily derive one concept

from another—without generating any overhead. The inheritance is only done in documentation, for instance,

deriving an extended data radio concept, which provides additional data such as LQI or RSSI values for received

messages, from the basic one. Any model can then implement this additional concept, and can be passed to

algorithms expecting such an extended one. The compiler automatically generates the corresponding code, while

not adding any unused functionality.

Another important design aspect is stackability, i.e., the possibility to build layered structures of multiple

algorithms/facets. For instance, a routing algorithm provides the same methods and type definitions as a radio, a

time synchronization algorithm implements the clock facet, and the position of a node can either be provided by

a node’s GPS, or a complex, distributed localization algorithm. Having such equivalence has a great advantage:

Algorithms can be stacked together mostly free. An algorithm expecting a clock as template parameter, can be

passed a complete time-synchronization algorithm, providing a global time basis for all nodes. Similarly, one can

hide a routing algorithm behind the debug facet: All debug messages would not be written to the local UART,

but automatically routed to sink collecting the debug output of the network. In both cases the algorithm would

not be aware of such a behavior—it is completely managed in algorithm initialization.

Finally, message delivery in heterogeneous systems is a crucial problem. With the different kinds of hardware,

there are basically three problems: different bit-widths, different byte-order, and differences with alignment. The

Wiselib provides a sophisticated solution, again efficient due to template usage. The basic idea is to provide

a serialization class with generic read and write methods, and then using template specialization to generate

exactly the code matching for the current platform. Within these methods, only network byte order is used. The

methods only support fixed-size data types, such as uint16 t, instead of data types where size changes with

bit-width.

4. Experimental Results

We evaluated the efficiency of our generic algorithm library in two parts of the Wiselib: First, system call

overhead and code size in OS facets; second, code size of selected algorithms for different platforms.
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We compared Wiselib system calls with native OS calls on three platforms: iSense, Contiki on a TelosB, and

ScatterWeb-FW on MSB nodes. TelosB and MSB are both equipped with a MSP430 processor. The results are

shown in Table 2.

iSense Contiki ScatterWeb

Native Wiselib Cost Native Wiselib Cost Native Wiselib Cost

Read ID 2µs 2µs 0% <1µs <1µs 0% <1µs <1µs 0%

Send Message 282µs 282µs 0% 336µs 345µs 3% 898µs 921µs 3%

Set Timer 135µs 141µs 4% 77µs 100µs 30% 20µs 43µs 115%

Table 2: Performance costs of Wiselib calls compared to native OS calls.

Both the read ID method on all evaluated platforms and the send message method on iSense systems are only

one-liners, and can thus be directly inlined by the compiler. However, sending a message or setting a timer

on Contiki and ScatterWeb requires the translation from C++ member function pointers to C function pointers,

which in turn comes with a certain overhead. Similarly, setting a timer on iSense needs a translation between

Wiselib and iSense specific OS callbacks. So there is a overhead in some Wiselib calls compared to native ones,

but fortunately this is only in terms of microseconds. Moreover, any generic solution must come with a certain

overhead, but the advantage of the Wiselib’s solution with C++ and templates can remove such overhead where

possible—see read ID method for an example.

Apart from call efficiency, code space is an important performance measure. As previously, we evaluated the

iSense platform, Contiki, and ScatterWeb-FW. Evaluation was done with the radio facet and the timer—note

again the platform differences: iSense runs on a 32-bit system, Contiki and ScatterWeb were compiled for 16-bit;

with corresponding differences in size of machine language instructions. The results are shown in Table 3.

iSense Contiki ScatterWeb

Radio 856+240 428+ 72 316+ 40

Timer 868+240 352+210 270+ 80

Table 3: Code-size overhead of OS facets. Shown is ROM (.text) and RAM (.bss + .data) in bytes.

Due to the fact that the concepts for radio and timer were held simple, no implementation required more than

a few hundred lines of code. The slight structure led not only to enhanced maintenance issues, it also simplifies

the integration of a completely new platform.

The resulting code size for all platforms is surprisingly small, given that, for example, C function pointer

translation had to be done at certain points. In particular, the code size for the ScatterWeb platform is with

around 600 bytes ROM, and 120 bytes RAM beneficial, given that there is not much more needed to run first

routing or clustering algorithms. Furthermore, note that the ROM usage of the facets is constant, and does not

grow with a higher amount of algorithms.

For the evaluation of algorithms, we took four implementations from the routing category: DSDV, DSR, a

simple tree routing, and a flooding algorithm. We compiled each algorithm for several target platforms, from

low-end TelosB running Contiki, up to the simulation environments Shawn and TOSSIM. Table 4 shows the

resulting code sizes and initial RAM usage for the several platforms.

16-bit OS 32-bit OS Simulators

Algorithm Contiki ScatterWeb iSense Shawn TOSSIM

DSDV 1446+ 72 1466+ 72 4776+136 4351+ 4 19146+ 4

DSR 1964+338 1716+238 5396+356 6918+ 4 20845+ 4

Tree 920+ 16 724+ 14 4060+ 24 2974+ 4 9946+ 4

Flooding 1122+ 50 762+ 34 2864+ 68 2260+ 4 10192+ 4

Table 4: Evaluation of code size as ROM size (.text) and RAM size (.bss + .data) in bytes.

The algorithm implementations adapt perfectly well to the different target platforms. Again, we must differen-

tiate between 16-bit and 32-bit systems, due to their different size of machine language instructions. The shown

sizes are the pure demand of the algorithm, without considering the OS facets.


